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Abstract: Several dozen signaling proteins are now known to 
contain 80-100 residue repeats, called PDZ (or DHR or GLGF) 
domains, several of which interact with the C-terminal tetrapeptide 
motifs X-Ser/Thr-X-Val-COO- of ion channels and/or receptors. 
PDZ  domains have previously been noted only in mammals, flies, 
and worms, suggesting that the primordial PDZ domain arose rel- 
atively late in eukaryotic evolution. Here, techniques of sequence 
analysis-including local alignment, profile, and motif database 
searches-indicate that PDZ domain homologues are present in 
yeast, plants, and bacteria. It  is suggested that two  PDZ  domains 
occur in bacterial high-temperature requirement A (htrA) and one 
in tail-specific protease (tsp) homologues, and that a yeast htrA 
homologue contains four PDZ domains. Sequence comparisons 
suggest that the spread of PDZ  domains in these diverse organisms 
may have occurred via horizontal gene transfer. The known affin- 
ity  of Escherichia coli tsp for C-terminal polypeptides is proposed 
to be mediated by its PDZ-like domain, in a similar manner to the 
binding of C-terminal polypeptides by animal PDZ domains. 
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A number of proteins associated with vertebrate tight or synaptic 
junctions in vertebrates or invertebrate septate junctions contain 
one or three imperfect copies of an 80-1C"residue domain called 
the PDZ domain (Cho et al., 1992; Woods & Bryant, 1993; Kim, 
1995). These proteins have been found as components of important 
sub-membranous structures and each contains a guanylate kinase- 
homologous domain; hence they have been termed membrane- 
associated guanylate kinases (MAGUKs). PDZ domains (previously 
called DHR or GLGF domains) also occur in other molecular 
contexts including protein kinases, phosphatases, a guanine nucle- 
otide exchange  factor  (GEF)  for  Rac, neuronal nitric oxide syn- 
thase (nNOS), and syntrophins (Ponting & Phillips, 1995; Cho 
et al., 1992). To date,  PDZ  domains have been found only in 
invertebrate and vertebrate proteins. 
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Several MAGUK PDZ domains have been shown to bind a sig- 
nature motif (X-Ser/Thr-X-Val-COO-) occurring as the C-terminal 
residues of K +  channels (Kim et al., 1995), NMDA receptor sub- 
units (Kornau et al., 1995) and the adenomatous polyposis coli 
gene product (Matsumine  et al., 1996). The second PDZ of a 
protein tyrosine phosphatase has been shown to bind Fas via a 
similar mechanism (Sato et  al., 1995). However, not all ligands 
that bind PDZ domains do so via X-SerlThr-X-Val-COO- motifs. 
The third of five PDZ  domains of Drosophila InaD appears to bind 
the Ca2+ channel trp via an internal (i.e., non-C-terminal) X-Sed 
Thr-X-Val motif (Shieh & Zhu, 1996), and non-C-terminal PDZ- 
PDZ domain interactions have been identified involving nNOS 
and both PSD-95 and syntrophin (Brenman et al., 1996). 

The crystal structures of liganded and unliganded PDZ domains 
have been determined recently (Doyle et al., 1996; Morais Cabral 
et al., 1996). These show a six p strand and 2 (Y helix structure that 
binds X-Ser/Thr-X-Val-COO- polypeptides via @sheet augmen- 
tation (Doyle  et  al., 1996; Harrison, 1996). The structures show 
that various elements of PDZ sequences that are relatively well 
conserved (Ponting & Phillips, 1995) are important either for ligand- 
binding or for structural reasons. The loop linking P-strands  A and 
B forms hydrogen bonds with the two carboxylate oxygens of the 
ligand, a conserved aspartic acid (strand p4) forms  a salt bridge 
with an arginine preceding p l ,  and a conserved asparagine m 4 - d  
linker) packs against the a2-/35 loop. The p2-p3 loop, whose 
length varies considerably in different domains, appears not to 
impede access of ligands to the binding site. PDZ domain se- 
quences occur in many different vertebrate and invertebrate pro- 
teins indicating a widespread use of their fold and functions in 
multiple signaling pathways. Here, evidence is presented that PDZ- 
homologous domains occur in bacterial, plant, and yeast proteins 
and  that these also possess C-terminal polypeptide binding functions. 

Novel eukaryotic PDZ domains: Since our original report on PDZ 
domains (Ponting & Phillips, 1995) several PDZ domain-containing 
gene sequences have been deposited in databases (Fig. 1). Each of 
these has been identified using profiles (Birney et al., 1996) and/or 
motifs (Tatusov et al., 1994) and cross-checked using Blastp (Alt- 
schul et al., 1994) searches ( p  < 1 X with previously- 
described PDZ domain sequences). These include 2 PDZs in a 
tyrosine kinase activator (TKA-I; K. Seedorf & A. Ullrich, un- 
published, EMBO  code Z501.50) that also appears to regulate pro- 
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Fig. 1. Multiple alignment of representative mammalian, Drosophila and C. elegans PDZ sequences, compared with tsp, htrA-like, 
yeast N1897 (HtrllYeast), SpoIVB (Sp4b) and Yael sequences. Residues that are conserved in 260% of eukaryotic PDZ or tsp-like or 
htrA-like sequences are shown in outline. Hydrophobic residues (ACFILMVWY) conserved in 280% (PDZ, tsp-like or htrA-like) or 
275% (HtrllYeast) sequences are shown in bold, as  are residues absolutely conserved among known spoIVB or Yael sequences. 
Secondary structure predictions (Rost & Sander, 1994) for htrA-like and tsp-like sequences are shown beneath the alignment, together 
with the known secondary structure of human Dlg PDZ3  (Morais Cabral et al., 1996). Numbers represent residues excised from 
sequences, and  dots represent insertions/deletions. A methionine substituted ( M e b 2  + Lys)  in a mutant form of Drosophila InaD that 
fails to bind the cation channel trp (Shieh & Zhu, 1996), is underlined. Domain limits and database accession codes follow the 
alignment. Species (in SwissProt format): Bacsu, Bacillus subtilis; Barba, Bartonella bacilliformis; Barhe, Bartonella henselae; Clodi, 
Clostridium  difficile; Drome, Drosophila melanogaster; Ecoli, Escherichia coli; Haein, Haemophilus influenzae; Horvu, Hordeum 
vulgare; Human, Homo sapiens; Mouse, Mus musculus; Mycle, Mycobacterium  leprae; Mycpa, Mycobacterium paratuberculosis; 
Pseae, Pseudomonas aeruginosa; Rat, Rattus norvegicus; Spiol, Spinacia oleracea; Syny3, Synechocystis sp. (strain PCC  6803); Yeast, 
Saccharomyces cerevisiae. 

tein kinase A (Weinman et al., 1995), and single copies  in rhophilin 
(Watanabe et al., 1996), periaxin (Gillespie et al., 1994), PICK1 
(Staudinger et al., 1995), enigma (Wu & Gill, 1994), human APX- 
like protein (Schiaffino et al., 1995), CLP36 (Wang et al., 1995), 
and Ritl8 (Wang et  al., 1995). A human gene product (KIAA0147) 
contains leucine-rich repeats and 4 PDZs (Nagase  et al., 1995). 
Several  PDZs  also occur in Caenorhabditis  elegans putative pro- 
teins (Wilson et al., 1994), e.g., F25h2.2, T10a3.1, COlb7.4, T21c9.1, 
C45g9.7, F35d2.5, COlf6.6, and T19b10.5, and C52all.4, which 
contain nine PDZ domains. The Drosophila inactivation no after- 
potential D (InaD) protein appears to contain 5 PDZs (Fig. 1) 
rather than the 2 originally reported (Shieh & Niemeyer et al., 
1995). 

Novel  bacterial, yeast, and  plant  PDZs: The final iteration of a 
SWise database search (Birney et al., 1996; cf. Bork & Gibson, 1996) 

used a profile derived from an alignment of 9 1 non-orthologous PDZ 
domain sequences. Surprisingly, 19 bacterial sequences scored higher 
(scores 4530-4694) than several previously-determined PDZ  do- 
main sequences (scores 4423-5  182)  and the perceived top "false pos- 
itive" (score 4529). Using Blastp searches (Altschul et al., 1994), 
each of these 19 could be identified as a homologue of either of two 
E. coli periplasmic proteases: high-temperature requirement A (htrA; 
also known as DegP or protease Do) (Lipinska et al., 1989; Waller 
& Sauer, 1996), and tail-specific protease (tsp; also known as prc) 
(Hara et al., 1991; Silber et al., 1992). Homologues of bacterial htrA 
and tsp  enzymes have been shown previously in humans (I. Ohno, 
J. Hashimoto, K. Takaoka, 0. Takahiro, K. Okubo, K. Matsubara, 
unpublished, EMBO  code D87258) and in higher plants (Oelmiiller 
et al., 1996), respectively. 

A variety of profile, motif, dotplot, and local similarity methods 
were subsequently employed to investigate whether the identifica- 
tion of htrA- and tsp-like sequences as PDZ domain candidates 
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was significant. Results from each of these methods (below) indi- 
cate that domains homologous to PDZ domains occur (a) in bac- 
terial  htrA-  and tsp- homologues, (b) in  bacterial stage IV sporulation 
B (spoIVB) and Yael proteins, (c) in the yeast htrA-like protein 
N1897, and (d) in plant tsp homologues. 

Spread of  PDZ domains via vertical or horizontal gene trans- 
fer?: Prior to this report PDZ domains were identified only in 
vertebrate and invertebrate proteins, making this distribution seem- 
ingly more limited than for other signaling domains such as src 
homology 2 or 3 (SH2, SH3) or pleckstrin homology (pH) do- 
mains, and suggests that the primordial PDZ arose relatively late in 
eukaryotic evolution. However, the identification of PDZ domains 
in bacterial, yeast, and plant proteins indicates either that the pri- 
mordial PDZ domain arose prior to the divergence of bacteria or 
eukaryotes, or that horizontal gene transfer led to the acquisition of 
these domains by bacteria. It is noted that bacterial and human 
htrA-like sequences are considerably more similar to each other 
(percentage sequence identity - 37-41%) than either is to each of 
the yeast htrA-like repeats (= 19-27%). Indeed, the four yeast PDZ 
domains in the htrA-like molecule are barely detectable, and no 
further PDZ domains can be discerned in the complete S. cerevi- 
siae genome sequence. Although conventional orthology between 
these sequences cannot be discounted, the strong sequence simi- 
larity between bacterial and mammalian PDZ  domains is sugges- 
tive of a horizontal mode of transmission. It is noted that the 
non-PDZ region of tsps  is sufficiently similar to mammalian in- 
terphotoreceptor retinoid-binding proteins (IRBPs) (Silber et al., 
1992) to indicate that this also resulted from a horizontal gene 
transfer event between eukaryotic and bacterial genomes. 

Functions of  PDZ domains in htrA  and tsp homologues: HtrA-like 
and tsp-like enzymes have not been suggested previously to con- 
tain homologous domains. However, it is notable that these peri- 
plasmic enzymes possess overlapping specificities that are required 
for growth or for protection from thermal and/or osmotic stress 
(Bass et al., 1996; Waller & Sauer, 1996). The active site of E. coli 
tsp is present in its IRBP homology region (Keiler & Sauer, 1995) 
and appears to be distinct from the C-terminal polypeptide binding 
site. The enzyme is known to cleave at discrete sites throughout 
polypeptide chains that possess C-terminal tripeptide sequences: 
$-$-a-COO- (where $ and are non-polar, and small uncharged 
residues, respectively) (Keiler & Sauer, 1996). This specificity for 
C-terminal tripeptides is strikingly similar to the specificity of 
MAGUK PDZ  domains for X-Ser/Thr-X-Val-COO- motifs (Ko- 
rnau et al., 1995). This suggests that metazoan PDZ domains and 
the PDZ-like region in bacterial tsp not only have evolved from a 
common ancestor but also possess a common function of binding 
C-terminal ligands. An extension to this argument predicts similar 
functions for other PDZ-like domains in bacterial proteins. These 
include PDZ  domains in a small subset of enymatically inactive 
htrA homologues that have been suggested to act as chaperones by 
binding denatured periplasmic proteins (Bass  et al., 1996). 

Detection of tandem PDZ-like repeats in htrA: Orthologues of 
htrA and an htrA-like protein (hhoA, or DegQ) were noted to 
contain two internal repeats in  their C-terminal regions, likely to be 
a result of gene duplication; hhoB (or DegS) contains only one of 
these repeats. REPRO (Heringa & Argos, 1993) predicted two 
-88 amino acid tandem repeats in E. coli htrA (residues 292-379 

and 396-474; score = 100). Importantly, these repeats in htrA and 
hhoA correspond to their PDZ domain-similar regions (cf. Ponting 
& Phillips, i995). 

Use of a local alignment method: Further evidence that the htrA- 
like repeats and regions of tsp proteases represent bacterial PDZ 
domains was obtained by performing Blastp searches (Altschul 
et al., 1994). For example, a search using the Haernophilus injlu- 
enzae hhoA sequence produced a  p-value of 1.2 X I O p 5  when 
aligned with the PDZ regions of human KIAAO147,  and the Bru- 
cella  abortus tsp sequence yielded a  p-value of 1.7 X when 
aligned with the C. elegans F28f5.3 PDZ sequence. Similarly, B. 
abortus tsp and htrA sequences were found to be related by a 
p-value of  1.5 X IO-'. Surprisingly, a S. cerevisiae ORF (Nl897 
gene product) produced a  p-value of  2.0 X when aligned 
with a Pseudomonas aeruginosa htrA homologue (mucD). Further 
investigation showed that this yeast hypothetical protein contains 
an internal duplication of an htrA-like sequence: the N-terminal 
repeat retains each of the catalytic triad residues of htrA serine 
proteases whereas these are all lacking in the C-terminal repeat 
(Fig. 2). 

Use of motif; projile, and dotplot methods: In order to investigate 
the significance of these sequence similarities, the MoST algo- 
rithm (Tatusov et al., 1994) was used with initial PDZ p 4  strand- 
like  alignment  blocks of either  (a)  bacterial  htrA-like  repeat 
sequences (29 sequences), or (b) tsp-like sequences (9 sequences), 
or (c) known PDZ domain sequences (80 sequences). For these 
searches an expected/observed ratio r < 5 X IO" was chosen and 
all sequences that were aligned with p-values < IO-' were con- 
sidered at the completion of the final iteration. Results demon- 
strated that, whichever starting sequence block was used, by the 
final iteration each of the three sequence classes (PDZ domains, 
tsp- and htrA-like sequences) were numerously represented with 
p < IO-'. Pairwise alignments of PDZ and htrA, or PDZ and tsp, 
or htrA and tsp j34 alignment blocks were all found to be signif- 
icant (Z scores of  10.6, 8.8, and 18.1, respectively) using the 
method of Pietrokovski (1996). 

Furthermore, for each of the three MoST searches three addi- 
tional homology families were revealed with p < These 
were the yeast htrA-like hypothetical protein (N1897; see above), 
an E. coli hypothetical protein (Yael), and the Bacillus subtilis 
stage IV sporulation protein B (spoIVB) (Van Hoy & Hoch, 1990) 
(Fig. 3). Similarly, the highest scoring sequences in SWise searches 
using htrA- or tsp-derived profiles were PDZ domains, htrA-like 

Fig. 2. Alignment of regions of the yeast htrA-like hypothetical protein 
(HtrVYeast, N1897) repeats 1 and 2, with active site regions of E. coli 
htrA, Staphylococcus aureus V8 protease (sw: Stsp-Staau)  and Staphylo- 
coccus aureus exfoliative toxin A  (sw: Eta-Staau). Conserved His,  Asp, 
and Ser residues that  are essential for  the serine protease activity of E. coli 
htrA (Skbrko-Glonek et al., 1995) are shown in outline, and hydrophobic 
residues conserved in 280% of sequences are shown in bold. Numbers 
represent amino acids that lie before, between, or after, alignment blocks. 
Calculated probabilities (p-values) (Schuler et al., 1991) of these align- 
ments arising by chance are given beneath the alignment. 
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Fig. 3. Schematic  representation  of  the  domain  organizations of PDZ 
domain-containing  proteins  (approximately  to  scale). Black boxes in  Yael 
represent predicted transmembrane  regions  and  double  diagonals represent 
discontinuities in scale.  Abbreviations:  BROIIYNKI.  domain  common  to 
yeast Brolp and to C. elegans RIOe12.1 (Watanabe et al., 1996);  HRI, 
homology  region I Rho-binding  domain; SP, serine  protease  domain (xSP. 
serine  protease  homologous  domain,  presumed  to be inactive); IGF-BP. 
domain  homologous to the insulin growth  factor-binding protein: IRBP, 
domain  homologous  to  interphotoreceptor  retinoid-binding  proteins. 

repeats, and tsp, Yael, N 1897, and spolVB proteins (data not shown). 
Dotplots (Thompson  et al., 1994) also demonstrated sequences 
similarities between PDZ and htrA-like repeats, and the presence 
of four htrA-like repeats in  the yeast htrA homologue (not shown). 
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